메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jeong, Chang-Sam (Hydrosystems Engineering Center, Korea Institute of Water and Environment, Korea Water Resources Cooperation) Lee, Sang-Jin (Hydrosystems Engineering Center, Korea Institute of Water and Environment, Korea Water Resources Cooperation) Ko, Ick-Hwan (Hydrosystems Engineering Center, Korea Institute of Water and Environment, Korea Water Resources Cooperation) Heo, Jun-Haeng (Department of Civil Engineering, Yonsei University) Bae, Deg-Hyo (Department of Civil and Environment Engineering, Sejong University)
저널정보
한국수자원학회 Water engineering research : international journal of KWRA Water engineering research : international journal of KWRA 제6권 제2호
발행연도
2005.1
수록면
63 - 71 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Nowadays Climate disasters are frequently happening due to occasional occurrences of EI Nino and La Nina events and among them, water shortage is one of the serious problems. To cope with this problem, climate model simulations can give very helpful information. To utilize the climate model for enhancing the water resources planning techniques, probabilistic measures of the effectiveness of global climate model (GCM) simulations of an indicator variable for discriminating high versus low regional observations of a target variable are proposed in this study. The objective of this study is to present the various analysis methods to find the suitable application methods of GCM information for Korean water resources planning. The basic formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. The various methods for adopting correct association, changing the window size, discrimination condition, and the use of temporally down scaled data were proposed to find out the suitable way for Korean water resources planning.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0