메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Tanveer, Muhammad Ejaz (Dept of Civil and Environ. Eng. Sejong University) Bae, Deg-Hyo (Dept of Civil and Environ. Eng. Sejong University)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2018년도 학술발표회
발행연도
2018.1
수록면
154 - 154 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0