메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sohn, Hoon (Weapon Response Group, Engineering Sciences and Applications Division, Los Alamos National Laboratory) Robertson, Amy N. (Weapon Response Group, Engineering Sciences and Applications Division, Los Alamos National Laboratory) Farrar, Charles R. (Weapon Response Group, Engineering Sciences and Applications Division, Los Alamos National Laboratory)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제17권 제3호
발행연도
2004.1
수록면
409 - 428 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a Holder exponent, a measure of the degree to which a signal is differentiable, is presented to detect the presence of a discontinuity and when the discontinuity occurs in a dynamic signal. This discontinuity detection has potential applications to structural health monitoring because discontinuities are often introduced into dynamic response data as a result of certain types of damage. Wavelet transforms are incorporated with the Holder exponent to capture the time varying nature of discontinuities, and a classification procedure is developed to quantify when changes in the Holder exponent are significant. The proposed Holder exponent analysis is applied to various experimental signals to reveal underlying damage causing events from the signals. Signals being analyzed include acceleration response of a mechanical system with a rattling internal part, acceleration signals of a three-story building model with a loosing bolt, and strain records of an in-situ bridge during construction. The experimental results presented in this paper demonstrate that the Holder exponent can be an effective tool for identifying certain types of events that introduce discontinuities into the measured dynamic response data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0