메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김영현 (한국소방산업기술원 기술연구소) 임우섭 (한국소방산업기술원 기술연구소) 정재한 (한국소방산업기술원 기술연구소) 이경전 (경희대학교 경영대학)
저널정보
디지털산업정보학회 디지털산업정보학회논문지 디지털산업정보학회논문지 제15권 제3호
발행연도
2019.1
수록면
129 - 137 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recommendation systems help users by suggesting items such as products, services, and information. However, most research on recommendation systems has not considered people's moods although the appropriate contents recommended to people would be changed by people's moods. In this paper, we propose a situation-based recommendation system which exploits people's mood. The proposed scheme is based on the fact that the mood of a user is changed frequently by the surrounding environments such as time, weather, and anniversaries. The environments are defined as feature identifications, and the rating values on items are stored as feature identifications at a database. Then, people can be recommended diverse items according to their environments. Our proposed scheme has some advantages such as no problem of cold start, low processing overhead, and serendipitous recommendation. The proposed scheme can be also a good option as of assistance to other recommendation systems.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0