메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문창배 (금오공과대학교) 이종열 (금오공과대학교) 김병만 (금오공과대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제24권 제6호
발행연도
2019.12
수록면
11 - 24 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
웹에서 정보 구매자들의 성향은 가성비에서 가심비 형태로 변해가는 추세이다. 멀티미디어 콘텐츠 추천에도 그러한 흐름이 있는데, 바로 폭소노미 (Folksonomy) 기반의 분위기를 이용한 추천 방법이다. 하지만 이런 방법의 경우 동의어를 고려하지 못한다는 문제점이 존재한다. 이 문제를 해결하기 위해 일부 연구에서는 Thayer모델의 12 분위기를 AV(Arousal and Valence)값으로 정의하여 그 문제점을 해결하였지만, 추천 성능이 재현 수준 0.1에서 키워드 기반 검색 방법보다 떨어지는 문제점을 보였다. 본 논문에서는 재현 수준 0.1에서도 키워드 기반 검색 방법과 동일한 추천 성능을 유지하면서 동의어 문제를 해결할 수 있도록 멀티미디어 콘텐츠의 분위기 벡터를 이용하는 방법을 제안하였다. 또한, 추천 성능 분석을 위해 기존 AV값 기반 방법과 키워드 기반 방법과 비교 분석하였다. 추천 성능 분석결과, 본 논문에서 제안한 방법이 전체적으로 기존 방법들 보다 우수한 추천 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 분위기 태그의 동의어를 고려한 멀티 미디어 콘텐츠 추천 방법
4. 실험 및 결과
5. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0