메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유영석 김지연 (대진대학교) 손방용 (대진대학교) 정종진 (대진대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제66권 제7호
발행연도
2017.7
수록면
1,083 - 1,091 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

목차

Abstract
1. 서론
2. 관련 연구
3. 음악 콘텐츠 추천을 위한 협업 필터링 기법의 구현
4. 실험 및 평가
5. 결론
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0