메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김종하 (영남대학교 의과대학 응급의학교실) 박신률 (영남대학교 의과대학 응급의학교실) 김종근 (경북대학교 의학전문대학원 응급의학교실)
저널정보
영남대학교 의과대학 영남의대학술지 영남의대학술지 제32권 제2호
발행연도
2015.1
수록면
90 - 97 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Contrast-induced nephropathy (CIN) can cause serious adverse effects. To reduce the occurrence of CIN related computed tomography (CT) in emergency patients, we assessed the respective roles of serum creatinine (SCr) alone and estimated glomerular filtration rate (eGFR) as an early predictor for CIN related CT. Methods: For patients with SCr <1.5 mg/dL who underwent CT in emergency department (ED) between September 2012 and October 2013, we assessed the prevalence of CIN and its adverse effects. The Modification of Diet in Renal Disease Study (MDRD) and Cockcroft-Gault (CG) formula was used for the calculation of eGFR. Practical calculation was performed by electronic medical record (EMR) system for MDRD and internet calculating service for CG. And we investigated the prevalence of CIN in eGFR $<60mL/min/1.73m^2$ before CT. Results: A total of 1,555 patients were enrolled. The prevalence of CIN after CT was 4.6% and it showed correlation with renal deterioration, increased in-hospital mortality, and prolonged hospitalization. Despite baseline SCr <1.5 mg/dL, among enrolled patients, 11.3% as MDRD equation and 29.5% as CG formula were $<60mL/min/1.73m^2$ and in this condition, the prevalence of CIN was significantly high (odds ratio was 2.87 [1.64-5.02] as MDRD equation and 2.03 [1.26-3.29] as CG formula). Conclusion: Just SCr <1.5mg/dL was not appropriate to recognize preexisting renal insufficiency, but eGFR using MDRD equation was useful in predicting the risk of CIN related CT in ED. Using EMR, calculation of eGFR can be easier and more convenient.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0