메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김솔람 (한국건설기술연구원 & 과학기술연합대학원대학교 교통물류 및 ITS 공학과) 윤덕근 (한국건설기술연구원 & 과학기술연합대학원대학교 교통물류 및 ITS 공학과)
저널정보
한국도로학회 한국도로학회논문집 한국도로학회논문집 제17권 제3호
발행연도
2015.1
수록면
117 - 124 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PURPOSES : The purpose of this study is to verify traffic accident injury severity factors for elderly drivers and the relative relationship of these factors. METHODS : To verify the complicated relationship among traffic accident injury severity factors, this study employed a structural equation model (SEM). To develop the SEM structure, only the severity of human injuries was considered; moreover, the observed variables were selected through confirmatory factor analysis (CFA). The number of fatalities, serious injuries, moderate injuries, and minor injuries were selected for observed variables of severity. For latent variables, the accident situation, environment, and vehicle and driver factors were respectively defined. Seven observed variables were selected among the latent variables. RESULTS : This study showed that the vehicle and driver factor was the most influential factor for accident severity among the latent factors. For the observed variable, the type of vehicle, type of accident, and status of day or night for each latent variable were the most relative observed variables for the accident severity factor. To verify the validity of the SEM, several model fitting methods, including ${\chi}^2/df$, GFI, AGFI, CFI, and others, were applied, and the model produced meaningful results. CONCLUSIONS : Based on an analysis of results of traffic accident injury severity for elderly drivers, the vehicle and driver factor was the most influential one for injury severity. Therefore, education tailored to elderly drivers is needed to improve driving behavior of elderly driver.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0