메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박명배 (배재대학교 실버보건학과) 문지영 (강원대학교병원 예방의학과) 김진리 (연세대학교 보건과학대학 보건행정학과) 남은우 (연세대학교 보건과학대학 보건행정학과)
저널정보
한국보건행정학회 보건행정학회지 보건행정학회지 제28권 제2호
발행연도
2018.1
수록면
128 - 137 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: This study aims to utilize Organization for Economic Cooperation and Development (OECD) data to identify macroscopic determinants of health at national level and to utilize it in health policy development through comparison and analysis with Korea. Methods: The potential years of life lost (PYLL) were used as dependent variables and 19 indicators were selected as health determinants to be independent variables based on the results of previous studies. Data analysis was done using SAS ver. 9.4 package (SAS Institute Inc., Cary, NC, USA) and model used in technical statistics concerning PYLL by countries, multi-linearity test between independent variables and OECD economic studies were modified and used. Results: From 1994 to 2012, the average PYLL for OECD countries was 4,262.9 years, the highest in Estonia and the lowest in Iceland. As a result of the analysis using the fixed effect model, the significant variables affecting PYLL were four variables: gross domestic product, nitric oxide, tobacco consumption, and number of doctors. The health determinants that had more influence on the PYLL of Korean people compared to other OECD countries were tobacco consumption, calorie consumption, fat intake and total health expenditure. Conclusion: In order to effectively reduce unnecessary deaths, we must continue to strengthen our smoking policy and nutrition policies such as calorie and fat intake. It is necessary to prevent the increase of total health expenditure due to the increase in the prevalence of chronic diseases and to strengthen the public health aspect.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0