메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김영주 (2작전사령부) 강경식 (명지대학교 산업경영공학과)
저널정보
대한안전경영과학회 대한안전경영과학회지 대한안전경영과학회지 제17권 제4호
발행연도
2015.1
수록면
373 - 379 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Supply units in each command are multi-tiered and each supply unit keeps a supply level independently, which can cause excess stock, leading false reports to the Logistics Command and increasing difficulties in managing user needs. This causes excess assets and the excess then causes deformation in demand. therefore, the supply support systems of our armed forces have become high-cost/low-efficiency and are insufficient to meet the needs of users in combat units. Civilian corporations and the US Department of Defense are downsizing the aforementioned multi-tiered supply systems thus revolutionizing efficient and effective logistics by adopting Supply Chain Management(SCM), and Prime Vendor policies. Prime Vendor policy is a logistics support method that allows users to directly request and receive supply items from suppliers, based on supply contracts between suppliers and central maintenance organizations like KDA. In other words, it is a system that allows for users to make orders to suppliers directly and suppliers to deliver goods to the users directly, cutting out the middle stage, thus allowing an efficient supply. This is a way forward in finance that cuts costs in net supplies and allows an efficient utilization of civilian assets. which is also known to fasten the speed of logistical support and stripping down the logistical structure. therefore, this report will explore Prime Vendor policies adopted in certain number of units for medical supplies that were taken in consideration of improvements in stock management in civilian organizations and the US Army, and aims to apply such policies for repair parts.

목차

등록된 정보가 없습니다.

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0