메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jo Su-Hyun (Department of Physiology, College of Medicine, Cheju National University, Department of Life Science, Pohang University of Science and Technology) Choi Se-Young (Department of Physiology and Dental Research Institute, College of Dentistry, Seoul National University) Yun Ji-Hyun (Department of Microbiology, College of Medicine, Cheju National University) Koh Young-Sang (Department of Microbiology, College of Medicine, Cheju National University) Ho Won-Kyung (Department of Physiology, College of Medicine, Seoul National University) Lee Chin-O. (Department of Life Science, Pohang University of Science and Technology)
저널정보
대한약학회 Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 제29권 제4호
발행연도
2006.1
수록면
310 - 317 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We investigated the effects of trinitrobenzene sulfonic acid (TNBS), an amino-group reagent, on the human ether-a-go-go-related gene (HERG) $K^+$ channels expressed in Xenopus oocytes. TNBS neutralizes the positively charged amino-groups of peptide N-terminal and lysine residues. External application of TNBS at 10 mM for 5 min irreversibly shifted the curves for currents at the end of the pulse and tail currents of HERG to a more negative potential and decreased the maximal amplitude of the $I_{tail}$ curve $(I_{tail,max})$. TNBS had little effect on either the activated current-voltage relationship or the reversal potential of HERG current, indicating that TNBS did not change ion selectivity properties. TNBS shifted the time constant curves of both activation and deactivation of the HERG current to a more hyperpolarized potential; TNBS's effect was greater on channel opening than channel closing. External $H^+$ is known to inhibit HERG current by shifting $V_{1/2}$ to the right and decreasing $I_{tail,max}$. TNBS enhanced the blockade of external $H^+$ by exaggerating the effect of $H^+$ on $I_{tail,max}$, not on $V_{1/2}$. Our data provide evidence for the presence of essential amino-groups that are associated with the normal functioning of the HERG channel and evidence that these groups modify the blocking effect of external $H^+$ on the current.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0