메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Proschan, Michael-A. (Office of Biostatistics Research, National Heart, Lung and Blood Institute) Follmann, Dean-A. (National Institute of Allergy and Infectious Diseases)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제33권 제1호
발행연도
2004.1
수록면
79 - 97 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We propose a permutation approach to the classic Behrens-Fisher problem of comparing two means in the presence of unequal variances. It is motivated by the observation that a paired test is valid whether or not the variances are equal. Rather than using a single arbitrary pairing of the data, we average over all possible pairings. We do this in both a parametric and nonparametric setting. When the sample sizes are equal, the parametric version is equivalent to referral of the unpaired t-statistic to a t-table with half the usual degrees of freedom. The derivation provides an interesting representation of the unpaired t-statistic in terms of all possible pairwise t-statistics. The nonparametric version uses the same idea of considering all different pairings of data from the two groups, but applies it to a permutation test setting. Each pairing gives rise to a permutation distribution obtained by relabeling treatment and control within pairs. The totality of different mean differences across all possible pairings and relabelings forms the null distribution upon which the p-value is based. The conservatism of this procedure diminishes as the disparity in variances increases, disappearing completely when the ratio of the smaller to larger variance approaches 0. The nonparametric procedure behaves increasingly like a paired t-test as the sample sizes increase.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0