메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jung, Inha (Ajou University)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제20권 제1호
발행연도
1991.1
수록면
67 - 76 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The empirical Bayes version involves ″independent″ repetitions(a sequence) of the component decision problem. With the varying sample size possible, these are not identical components. However, we impose the usual assumption that the parameters sequence $\theta$=($\theta$$_1$, $\theta$$_2$, …) consists of independent G-distributed parameters where G is unknown. We assume that G $\in$ g, a known family of distributions. The sample size $N_i$ and the decisin rule $d_i$ for component i of the sequence are determined in an evolutionary way. The sample size $N_1$ and the decision rule $d_1$$\in$ $D_{N1}$ used in the first component are fixed and chosen in advance. The sample size $N_2$and the decision rule $d_2$ are functions of *see full text($\underline{X}^1$equation omitted), the observations in the first component. In general, $N_i$ is an integer-valued function of *see full text(equation omitted) and, given $N_i$, $d_i$ is a $D_{Ni}$/-valued function of *see full text(equation omitted). The action chosen in the i-th component is *(equation omitted) which hides the display of dependence on *(equation omitted). We construct an empirical Bayes decision rule for estimating normal mean and show that it is asymptotically optimal.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0