메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유주한 (창원대학교 산업기술연구원) 정성관 (경북대학교 조경학과) 최원영 (경북대학교 대학원 조경학과) 이우성 (경북대학교 대학원 조경학과)
저널정보
한국조경학회 한국조경학회지 한국조경학회지 제34권 제5호
발행연도
2006.1
수록면
39 - 51 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was carried out to provide guidance to environmental policy makers when deciding which assessment fields (biotic, abiotic, qualitative, functional) should have priority for ecological preservation and to develop an objective and scientific methodology by introducing the engineering concept of the fuzzy integral. The grant of weights was used the eigenvalues calculated by factor analysis, and the converted values of indicators were obtained in multiplying the arithmetic values and eigenvalues. The results of the appropriateness and reliability of assessment fields were examined over 0.6, and the results showed that the design of questionnaire presented no great problems. When the fuzzy integral was calculated to determine the rankings at ${\lambda}$=1, 2, 3, 4, 5, respectively, they were 0.646, 0.630, 0.943, 1.423, and 1.167 for the biotic field, 1.298, 1.400, 0.901, 0.580, and 1.456 for the abiotic field, 0.714, 0.674, 0.346, 0.674, and 1.610 in the qualitative field and 1.000, 0.973, 0.943, 1.024, and 1.008 in the functional field. The sensitivity to ${\lambda}$ value showed that ${\lambda}=4$ was the most suitable. In comparison with ${\lambda}=0$ (the arithmetic mean), the range of change was narrow. Because the range for ${\lambda}=4$ was narrower than my other values, ${\lambda}=4$ was sure to be available in ranking-decision. The fuzzy integral is expected to be a method for analyzing and filtering human thoughts. In the future, in order to overcome linguistic uncertainty and subjectivity, other fuzzy integral models including Sugeno's method, AHP, and so forth should be used.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0