메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
CHUNG, Young-Bok (Department of Mathematics, Chonnam National University)
저널정보
호남수학회 호남수학학술지 호남수학학술지 제25권 제1호
발행연도
2003.1
수록면
83 - 91 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We prove a unique continuation theorem for $C^{\infty}$ functions in pseudoconvex domains in ${\mathbb{C}}^{n}$. More specifically, we show that if ${\Omega}$ is a pseudoconvex domain in ${\mathbb{C}}^n$, if f is in $C^{\infty}({\Omega})$ such that for all multi-indexes ${\alpha},{\beta}$ with ${\mid}{\beta}{\mid}{\geq}1$ and for any positive integer k, there exists a positive constant $C_{{\alpha},{\beta},{\kappa}}$ such that $$|{\frac{{\partial}^{{\mid}{\alpha}{\mid}+{\mid}{\beta}{\mid}}f}{{\partial}z^{\alpha}{\partial}{\bar{z}}^{\beta}}{\mid}{\leq}C_{{\alpha},{\beta},{\kappa}}{\mid}f{\mid}^{\kapp}}\;in\;{\Omega}$$, and if there exists $z_0{\in}{\Omega}$ such that f vanishes to infinite order at $z_0$, then f is identically zero. We also have a sharp result for the case of strongly pseudoconvex domains.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0