메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chung, Nguyen Thanh (Dep. Science Management & International Cooperation, Quang Binh University)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제32권 제1호
발행연도
2014.1
수록면
113 - 128 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Consider a class of p(x)-Kirchhoff type equations of the form $$\left\{-M\left({\int}_{\Omega}\;\frac{1}{p(x)}{\mid}{\nabla}u{\mid}^{p(x)}\;dx\right)\;div\;({\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)={\lambda}V(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u=0\;on\;{\partial}{\Omega},$$ where p(x), $q(x){\in}C({\bar{\Omega}})$ with 1 < $p^-\;:=inf_{\Omega}\;p(x){\leq}p^+\;:=sup_{\Omega}p(x)$ < N, $M:{\mathbb{R}}^+{\rightarrow}{\mathbb{R}}^+$ is a continuous function that may be degenerate at zero, ${\lambda}$ is a positive parameter. Using variational method, we obtain some existence and multiplicity results for such problem in two cases when the weight function V (x) may change sign or not.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0