메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한윤희 (조선대학교) 곽근창 (조선대학교)
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 第47卷 CI編 第3號
발행연도
2010.5
수록면
76 - 82 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 수치적인 입출력데이터로부터 언어적인 규칙을 생성시키기 위한 체계적인 접근방법으로써 정보입자(information granules)에 근거한 언어적인 모델(LM: Linguistic Model)을 발전시킨다. Pedrycz에 의해 소개된 언어적인 모델은 컨텍스트 기반 퍼지 클러스터링(CFC: Context-based Fuzzy Clustering)으로부터 얻어지는 퍼지 정보입자에 의해 수행되어지며, 이는 입력과 출력공간과 연관된 클러스터 된 데이터들의 동질성을 보존하도록 클러스터를 추정한다. 언어적인 모델의 효능성은 이전 연구에서 이미 증명되었음에도 불구하고 성능 측면에서 개선시킬 필요성이 있다. 따라서, 본 논문에서는 기존 언어적인 모델의 근사화와 일반화 성능을 모두 향상시키기 위해 언어적인 컨텍스트의 자동적인 생성, 바이어스항의 추가, 결론부 파라미터의 변형된 구조를 통해 이루어진다. 실험결과는 자동차 연료소비량 예측문제와 보스턴 housing 데이터를 통해 제안된 방법이 언어적인 모델뿐만 아니라 기존 방법들보다 우수함을 증명한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 언어적인 모델(LM)
Ⅲ. 개선된 언어적인 모델(ILM)
Ⅳ. 시뮬레이션 및 결과 고찰
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002843608