메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
함성준 (영남대학교 정보통신공학과) 정호열 (영남대학교 정보통신공학과) 정현열 (영남대학교 정보통신공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제25권 제1호
발행연도
2006.1
수록면
36 - 42 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 화자검증 시스템의 성능향상을 위해서 주성분 분석 (PCA) 기반 Mel-Frequency Discrete Wavelet Coefficients (MFDWC) 추출방법을 제안한다. 제안된 방법에서는 멜척도 (Mel-scale)를 근사화한 각 레벨 (level)의 각 노드 (node) 에너지를 계산하기 위해 기존의 평균치 대신 주성분 분석을 이용한 첫 번째 eigenvector를 이용한다. 이 eigenvecto.의 제곱의 합은 1로서 일반적인 가중 함수 (weighting function)의 조건을 만족하고, 또한 각 화자마다 서로 다른 값을 갖게 되므로, 화자의 특징을 더 잘 나타내는 MFDWC를 추출할 수 있다. 화자검증은 Gaussian Mixture Model (GMM) 기반의 백그라운드 모델과 화자 모델과의 점수를 비교하는 이진 결정 (binary decision) 방법을 이용하여 Universal 백그라운드 모델 (UBM)과 각 화자 모델의 값을 프레임단위로 비교하여 대상 화자의 수락/거부 여부를 결정하는 방법을 채택하였다. 특징 파라미터에 따른 화자 검증 성능변화를 확인하기 위하여 제안된 화자종속 가중함수를 이용한 MFDWC를 특징 파라미터로 이용한 경우와 Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), 기존의 MFDWC를 특징 파라미터로 이용한 경우에 대하여 성능비교실험을 수행한 결과 각각 $0.80\%,\;5.14\%,\; 6.69\%$의 향상된 성능을 나타내어 제안한 방법의 유효성을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0