메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김세현 (한국과학기술원 전산학과) 장길진 (한국과학기술원 전산학과) 오영환 (한국과학기술원 전산학과)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
발행연도
1999.1
수록면
28 - 31 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기존의 문장종속형 화자인식 방법들은 대부분 음성인식에서 사용되는 방법을 그대로 적용하기 때문에, 화자의 개인성 정보보다 음운정보에 더 민감한 단점이 있다. 화자인식 시스템의 성능향상을 위해서는 음운정보보다는 화자의 개인성 정보가 잘 반영되도록 하는 것이 중요하다. 본 논문에서는 HMM(hidden Maxkov model)을 기반으로 한 문장종속형 화자확인 시스템의 성능향상을 위한 관측확률 가중 반법을 제안한다. 먼저 주어진 학습자료에서 화자의 개인성이 잘 반영된 프레임들을 예측한다. 임의의 입력음성에 대한 인식점수는 화자의 특징이 잘 반영된 프레임의 관측확률에 가중치를 주어 구한다. 제안한 방법을 적용한 결과 기존의 우도비(likelihood ratio) 정규화 점수를 사용하는 방법에 비해 동일오류율(EER, equal error rate)을 $2\~3\%$정도 줄여 인식율 향상을 얻을 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0