메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Bae, Jong-Sig (Department of Mathematics, Sung Kyun Kwan University, Suwon, 440-746)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제26권 제2호
발행연도
1997.1
수록면
231 - 243 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0