메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Kim, Yoen-Joo (Samsung Advanced Institute of Technology) Yoon, Gil-Won (Samsung Advanced Institute of Technology)
저널정보
한국근적외분광분석학회 한국근적외분광분석학회 학술발표회 한국근적외분광분석학회 2001년도 NIR-2001
발행연도
2001.1
수록면
4,102 - 4,102 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0