메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
So, Beong-o (Department of Statistics, Ewha Womens University, Seodaemun, Seoul 120-750)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제24권 제1호
발행연도
1995.1
수록면
149 - 160 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We consider the problem of optimal adaptive estiamtion of the euclidean parameter vector $\theta$ of the univariate non-linerar autogressive time series model ${X_t}$ which is defined by the following system of stochastic difference equations ; $X_t = \sum^p_{i=1} \theta_i \cdot T_i(X_{t-1})+e_t, t=1, \cdots, n$, where $\theta$ is the unknown parameter vector which descrives the deterministic dynamics of the stochastic process ${X_t}$ and ${e_t}$ is the sequence of white noises with unknown density $f(\cdot)$. Under some general growth conditions on $T_i(\cdot)$ which guarantee ergodicity of the process, we construct a sequence of adaptive estimatros which is locally asymptotic minimax (LAM) efficient and also attains the least possible covariance matrix among all regular estimators for arbitrary symmetric density.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0