메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
김주한 (서울대 의대)
저널정보
한국생물정보시스템생물학회 한국생물정보시스템생물학회 학술대회 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
발행연도
2006.1
수록면
30 - 36 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Tissue microarray (TMA) is an array-based technology allowing the examination of hundreds of tissue samples on a single slide. To handle, exchange, and disseminate TMA data, we need standard representations of the methods used, of the data generated, and of the clinical and histopathological information related to TMA data analysis. This study aims to create a comprehensive data model with flexibility that supports diverse experimental designs and with expressivity and extensibility that enables an adequate and comprehensive description of new clinical and histopathological data elements. We designed a Tissue Microarray Object Model (TMA-OM). Both the Array Information and the Experimental Procedure models are created by referring to Microarray Gene Expression Object Model, Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE), and the TMA Data Exchange Specifications (TMA DES). The Clinical and Histopathological Information model is created by using CAP Cancer Protocols and National Cancer Institute Common Data Elements (NCI CDEs). MGED Ontology, UMLS and the terms extracted from CAP Cancer Protocols and NCI CDEs are used to create a controlled vocabulary for unambiguous annotation. We implemented a web-based application for TMA-OM, supporting data export in XML format conforming to the TMA DES or the DTD derived from TMA-OM. TMA-OM provides a comprehensive data model for storage, analysis and exchange of TMA data and facilitates model-level integration of other biological models.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0