메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
유현석 (인하대학교 건축공학과) 이정호 (인하대학교 건축공학과) 김영석 (인하대학교 건축공학과) 성낙원 (인하대학교 건축공학과)
저널정보
한국건설관리학회 한국건설관리학회 학술대회 한국건설관리학회 2004년도 제5회 정기학술발표대회 논문집
발행연도
2004.1
수록면
561 - 564 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
국내외에서는 크랙실링 공법의 이점 및 도로면 유지보수 공사의 위험 요소를 인식하여 90년대 초반부터 크랙실링 자동화 장비 개발을 위한 연구를 진행하여 왔다. 기존 문헌 고찰과 도로면 크랙실링 자동화 장비(Automated Pavement Crack Sealer; APCS)의 실험실 및 현장 실험 결과, 도로면에 존재하는 크랙 네트워크를 자동으로 탐지하고 모델링하는 과정의 속도와 정확성을 향상시키는 것은 개발된 크랙실링 자동화 장비의 실용화를 위해 매우 중요한 요인으로 인식되었다 그러나, CCD 카메라를 통해 습득된 도로면 영상에서 크랙 네트워크를 완전 자동으로 인식하는 기술은 일반적인 영상 인식 분야에서 보다 외부 환경적인 요인으로 인해 낮은 인식률을 가지고 있다 본 연구를 통해 기존에 개발된 APCS 머신비전 알고리즘의 경우 도로면 영상의 환경 요인에 의해 발생된 문제점들을 많이 해결하였으나 실용화 단계에서 요구되는 크랙 인식률에는 도달하지 못하였다. 따라서, 본 연구의 목적은 기존 APCS 머신 비전 알고리즘의 완전 자동화 방식 크랙 탐지 및 모델링 알고리즘의 문제점을 분석하고 신경망 학습 기법을 이용한 크랙 인식 알고리즘을 개발하는 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0