메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
아시아테플 Journal of Asia TEFL Journal of Asia TEFL 제17권 제1호
발행연도
2020.1
수록면
143 - 159 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Auto-generated captions on YouTube have proven useful in helping viewers better understand the words being spoken. However, at times they fail to contain accurate captions. In these cases, they lead to confusion. The aim of this paper is to identify and analyze errors in the auto-generated captions of 20 commencement speeches on YouTube. These speeches were presented over a period of 12 years by speakers from different walks of life. The researchers selected ten male and ten female icons. Only the first 10 minutes of the speeches were utilized for this investigation. All the captioned errors were collected and analyzed. Upon completion of the analysis, it was discovered that the frequency of errors in each speech ranged between 10 and 46 cases, with an average of one error occurring about every 26 seconds. Among the different error categories, nouns record the highest number with 144 cases (31.3%). The second is verbs with 93 cases (20.2%), then prepositions with 37 cases (8.1%). Among the four subcategories, namely omission, addition, substitution, and word order, substitution recorded the highest amount of errors with 357 cases (77.6%). Furthermore, the errors were classified into two major groups. The first, involving function words, appeared in 169 cases (36.7%). The second, involving content words, appeared in 291 cases (63.3%). The results of this research suggest that a continuous development of the voice recognition software that automatically generates captions is necessary for more efficient and accurate data that will help viewers and listeners better comprehend the video contents.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0