메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제40권 제3호
발행연도
2020.1
수록면
201 - 208 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Interpretation of changes in serial laboratory results is necessary for both clinicians and laboratories; however, setting decision limits is not easy. Although the reference change value (RCV) has been widely used for auto-verification, it has limitations in clinical settings. We introduce the concept of overlapping confidence intervals (CIs) to determine whether the changes are statistically significant in clinical chemistry laboratory test results. Methods: In total, 1,202,096 paired results for 33 analytes routinely tested in our clinical chemistry laboratory were analyzed. The distributions of delta% absolute values and cut-off values for certain percentiles were calculated. The CIs for each analyte were set based on biological variation, and data were analyzed at various confidence levels. Additionally, we analyzed the data using RCVs and compared their clinical utility. Results: Most analytes had low indexes of individuality with large inter-individual variability. The 97.5th percentile cut-offs for each analyte were much larger than conventional RCVs. The percentages of results exceeding RCV95% and RCV99% corresponded to those with no overlap at the 83.4% and 93.2% confidence levels, respectively. Conclusions: The use of overlapping CIs in serial clinical chemistry test results can overcome the limitations of existing RCVs and replace them, especially for analytes with large intra-individual variation.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0