메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한중환자의학회 Acute and Critical Care Acute and Critical Care 제35권 제2호
발행연도
2020.1
수록면
102 - 109 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: This study aimed to develop a model for predicting trauma outcomes by adding arterial lactate levels measured upon emergency room (ER) arrival to existing trauma injury severity scoring systems. Methods: We examined blunt trauma cases that were admitted to our hospital during 2010– 2014. Eligibility criteria were cases with an Injury Severity Score of ≥9, complete Trauma and Injury Severity Score (TRISS) variable data, and lactate levels that were assessed upon ER arrival. Survivor and non-survivor groups were compared and lactate-based prediction models were generated using logistic regression. We compared the predictive performances of traditional prediction models (Revised Trauma Score [RTS] and TRISS) and lactate-based models using the area under the curve (AUC) of receiver operating characteristic curves. Results: We included 829 patients, and the in-hospital mortality rate among these patients was 21.6%. The model that used lactate levels and age provided a significantly better AUC value than the RTS model. The model with lactate added to the TRISS variables provided the highest Youden J statistic, with 86.0% sensitivity and 70.8% specificity at a cutoff value of 0.15, as well as the highest predictive value, with a significantly higher AUC than the TRISS. Conclusions: These findings indicate that lactate testing upon ER arrival may help supplement or replace traditional physiological parameters to predict mortality outcomes among Korean trauma patients. Adding lactate levels also appears to improve the predictive abilities of existing trauma outcome prediction models.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0