메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국초등과학교육학회 초등과학교육 초등과학교육 제39권 제1호
발행연도
2020.1
수록면
26 - 39 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Visual Representation Competence Taxonomy (VRC-T) was developed in previous study(Yoon, 2018) to provide a framework conducive to assess visual representation competence and to devise appropriate educational activities for it. This study is an extension of the previous study. It aimed to explore the usefulness of VRC-T and revise it by analyzing the patterns of visual representation use in science lessons. The researcher collected lesson plans on shadow principle from 11 pre-service and 13 in-service elementary teachers and conducted individual interviews regarding what visual representations they considered and how they tried to use them in science lessons. VRC-T was used as an analytical framework to examine the types and cognitive processes of visual representations. As a result, new categories were added and the revised VRC-T was completed (VRC-TR). It was also found that both pre- and in-service teachers mainly focused on ‘interpreting’ the ‘descriptive representation’ while designing their lesson plans. Additionally, in-service teachers showed more limited use of visual representations compared to pre-service teachers. In-service teachers largely relied on the national science textbooks, while pre-service teachers reflected their own learning experiences in their teacher-training program. These results showed that teachers’ use of visual representations heavily relied on their prior learning and teaching experiences. The VRC-TR presented in this study and examples of class activities in each category can be helpful for teachers and researchers who want to use visual representations more effectively.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0