메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
복식문화학회 복식문화연구 복식문화연구 제28권 제2호
발행연도
2020.1
수록면
199 - 214 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The study investigates Atlas fabrics, the Ikat weaving method used by the Uygur People in Xinjiang, China. Based on domestic and foreign papers and other literature, different cultural characteristics of Ikat fabrics from various regions are compared. Following a theoretical investigation, characteristics of fabrics from the Indian Patola, Indonesian Ikat, Japanese Kasuri, and Uzbekistan Adras are summarized and compared with the characteristics of pattern, color, and manufacturing process of Atlas silk from Xinjiang China (also an Ikat fabric). The results are as follows. First, although the weaving process used for Ikat fabrics differs from country to country according to different national cultures, lifestyles, colors, patterns, and usage methods, they are all Ikat dyed fabrics. Therefore, they are all regarded as precious objects symbolizing a certain social status, and are used as a gift for special occasions, such as weddings. Second, the form of the pattern varies. Indian Patola has clear outlines and regular patterns, while the patterns of Japanese Kasuri are mainly inspired by folk life ideas. Indonesian Ikat contains influences from indigenous tribes, and Uzbekistan’s and China’s Atlas textiles are influenced by geography, religion, and national culture, including bright colors and pattern designs inspired by plants, musical instruments, and geometric figures. Finally, the patterns and colors of Xinjiang Atlas fabrics present strong ethnic characteristics. Unlike the Uzbekistan fabric which is mostly influenced by Islam, human and animal patterns would not feature in Xinjiang Atlas patterns, which mostly consist of long strips, repeated in a neat and orderly form.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0