메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권용훈 (강원대학교) 정인범 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제26권 제7호
발행연도
2020.7
수록면
312 - 321 (10page)
DOI
10.5626/KTCP.2020.26.7.312

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
사물인터넷 환경에서 위치 기반 서비스를 위한 기술 중에서 블루투스 비콘은 활발하게 연구되고 있는 기술이다. 비콘에서 발산되는 신호 중 RSSI 값을 이용하여 실내에서 이동 중인 스마트 객체와 사물 간의 거리측정을 유도할 수 있다. 그러나 RSSI는 신호의 반사와 회절과 같은 현상에 의해 영향을 받아 정확도가 높지 않은 문제점을 가지고 있다. 본 논문에서는 다측면 기계학습 알고리즘들을 사용하여 RSSI를 사용한 거리측정의 정확도를 높이는 연구를 진행하였다. 저주파 통과 필터와 파라미터 학습 그리고 역전파 학습을 순차적으로 진행하여 거리를 측정하였다. 제안된 다측면 기계학습 방식의 성능 평가를 위해 실험의 각 단계에서 유도된 거리와 실제 거리 간의 오차를 바탕으로 정확도를 평가하였다. 실험 결과 제안된 거리측정 방식은 제한된 거리 범위 내에서 실측값에 근접한 거리 값을 유도함을 보이므로, 사물인터넷 망에서 위치 인식 서비스 응용프로그램에 기여할 수 있음을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 스마트 이동 객체의 위치 보정
4. 구현 및 실험
5. 성능 평가
6. 결론 및 향후 계획
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000892502