메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soonhyun Hong (Inha University)
저널정보
한국음운론학회 음성음운형태론연구 음성음운형태론연구 제26집 제1호
발행연도
2020.4
수록면
159 - 184 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Though the importance of spectral characteristics at the steady-state central sections of Korean monophthongal signals in the hVd syllable has been amply reported in the literature, it has been rarely studied whether dynamic spectral measurements sampled multiply across the temporal dimension can better characterize Korean vowels in spontaneous speech than static spectral measurements at a (steady-state) central section. Furthermore, the perceptual influence of non-spectral cues on the spectral properties of vowels in vowel perception has been frequently reported in the literature, but few reports have been released on the relative amount of the individual perceptual contributions of non-spectral cues (e.g., gender, speaking rate, duration, F0, place and manner of the flanking phones, etc.) on the spectral properties of vowels in vowel perception. Neural Network pattern recognition modeling on spectral identification of Korean monophthong signals in Seoul Corpus showed that dynamic spectral models fitted to non-spectral cues, identified vowel signals better than static spectral models. Furthermore, flanking phone identities, and manner and place of flanking phones (i.e., coarticulation information) were the most contributive to spectral vowel identification. However, F0, speaking rate, duration, gender, and speaker’s age showed little or almost no contribution.

목차

1. Introduction
2. The perceptual influence of non-spectral cues on spectral properties of vowels in the literature
3. Method
4. Results
5. Discussion
6. Conclusion
REFERENCES

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-711-000592334