메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jun Yeop Lee (Inha University) Juhyeon Lee (Inha University)
저널정보
인하대학교 정석물류통상연구원 Journal of International Logistics and Trade Journal of International Logistics and Trade Vol.17 No.3
발행연도
2019.9
수록면
67 - 76 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Using the methodologies of text mining, this paper examines the implications of US and Chinese policies on bilateral trade. Official speeches by political leaders of the U.S. and China on the issues of trade were collected and analytically examined for US-China gaps in major foreign policies, such as bilateral trade and the Belt and Road Initiative. In this paper, a term frequency-inverse document frequency word cloud, a network similarities index, machine learning-processed latent Dirichlet allocation (LDA), and structural equivalence are applied to examine the meanings of the speeches. The main arguments in this paper are as follows. First, the document similarity between the speeches of Chinese and US leaders appears to be completely different. Also, while the documents from Chinese leaders are considerably similar, the documents from US leaders differ by far. Secondly, LDA topic analysis indicates that China concentrates more on international and collaborative relationships, while the U.S. has more focus on domestic and economic interests. Third, from a word hierarchy analysis, the basic words used by American and Chinese leaders are also completely different. Agriculture, farmers, automobiles, and negotiations are the basic words for American leaders, but for Chinese leaders, the basic words are planning, markets, and education.

목차

ABSTRACT
1. Introduction
2. Data and document similarity
3. Word cloud
4. Topic analysis and ego network
5. Word role analysis: Word hierarchy
6. Conclusions
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-324-000530819