메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Eun Kyong Shin (Korea University) Byunghwee Lee (Korea Advanced Institute of Science and Technology(KAIST)) Hawoong Jeong (Korea Advanced Institute of Science and Technology(KAIST))
저널정보
한국사회학회 한국사회학회 사회학대회 논문집 한국사회학회 2019년 정기사회학대회
발행연도
2019.12
수록면
230 - 230 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The growth of the field of epidemic-related social media research is an encouraging development. However, these studies to date suffer from empirical limitations and lack the multilayered relational investigations. The case under scrutiny is the Middle East Respiratory Syndrome (MERS) epidemic ep�isode in South Korea 2015. Linking the confirmed patients network data (N=186) with social media data (N=1,840,550), we examine the relationship between epidemic networks and corresponding tweet networks. Using one and two mode net�work methods, we unpack the epidemic diffusion process and the epidemic-related social media discourse evolution. TweetNet, which obtained by using the significance filter algorithm, preserving the original tweet pattern while maintain�ing only 1.0% of all tweets. When we differentiate nodes by their user type into three categories, we see that they display distinct temporal and structural behavior. They showed different sensitivity in spike timing by node types and linking pattern by type compared to simulation generated Random�Net. High self-clustering pattern by governmental tweets and public could possibly hinder efficient communication/information spreading. Epidemic related social media surveillance should pay customized attentions accordingly to different types of users. This study should generate discussion about the feasibility and future of liability of social media based epidemic surveillance.

목차

Abstract
Introduction
Data
Methods
Results
Findings and Discussions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-331-000425376