메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Donho Nam (Daegu University) Seokwon Yeom (Daegu University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.20 No.1
발행연도
2020.3
수록면
43 - 51 (9page)
DOI
10.5391/IJFIS.2020.20.1.43

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Small unmanned aerial vehicles can be effectively used for aerial video surveillance. Although the field of view of the camera mounted on the drone is limited, flying drones can expand their surveillance coverage. In this paper, we address the detection of moving targets in urban environments with a moving drone. The drone moves at a constant velocity and captures video clips of moving vehicles such as cars, buses, and bicycles. Moving vehicle detection consists of frame registration and subtraction followed by thresholding, morphological operations and false blob reduction. First, two consecutive frames are registered; the coordinates of the next frame are compensated by a displacement vector that minimizes the sum of absolute difference between the two frames. Second, the next compensated frame is subtracted from the current frame, and the binary image is generated by thresholding. Finally, morphological operations and false alarm removal extract the target blobs. In the experiments, the drone flies at a constant speed of 5.1 m/s at an altitude of 150 m while capturing video clips of nine moving targets. The detection and false alarm rates as well as the receiver operating characteristic curves are obtained, and the drone velocities in the x and y directions are estimated by the displacement vector. The average detection rate ranges from 90% to 97% while the false alarm rate ranges from 0.06 to 0.5. The root mean square error of the speed is 0.07 m/s when the reference frame is fixed, showing the robustness of the proposed method.

목차

Abstract
1. Introduction
2. Frame Registration and Moving Object Detection
3. Experimental Results
4. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-000428725