메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Myung-Hwi Kim (Sangmyung University) Beakcheol Jang (Sangmyung University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제2호(통권 제191호)
발행연도
2020.2
수록면
123 - 131 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
텍스트 순위 알고리즘은 키워드 추출을 위한 대표적인 방법이며 그 중요성이 강조되고 있다. 본 논문에서는 텍스트 랭킹 알고리즘에서 대표적으로 사용되는 TF-IDF, SMART, INQUERY, CCA 알고리즘이 적용된 최근 연구와 실험해 비교한다. 먼저, 각 알고리즘을 설명한 후 뉴스와 트위터 데이터를 기반으로 알고리즘의 성능을 분석한다. 실험 결과에 따르면 네 가지 알고리즘 모두 뉴스 데이터에서 특정 단어의 추출 성능이 좋다는 것을 알 수 있다. 그러나 Twitter의 경우 CCA는 특정 단어를 추출하는 최고의 성능을 가지며 INQUERY는 가장 낮은 성능을 보여준다. 또한 6 가지 비교 메트릭을 통해 알고리즘의 정확성을 분석한다. 실험 결과 CCA가 뉴스 데이터에서 최고의 정확도를 보여주고, 트위터의 경우 TF-IDF와 CCA는 비슷한 성능을 보이며 높은 정확도를 보인다.

목차

Abstract
요약
I. Introduction
II. Algorithms
III. Experiment
IV. Result
V. Conclusions
REFERENCES

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000377799