메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이주영 (부산대학교) 이유리 (부산대학교) 김형남 (부산대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제52권 제10호
발행연도
2015.10
수록면
139 - 147 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Steady state visual evoked potential (SSVEP)는 뇌파의 종류 중 하나로서 다른 뇌파에 비해 훈련 시간이 짧고, 비교적 높은 신호대잡음비 (signal-to-noise ratio)와 높은 정보전달량 (information transfer rate)을 가지고 있어서 최근에 뇌-컴퓨터 접속 장치 (brain-computer interface; BCI)에 많이 사용되고 있다. SSVEP 신호를 분석하는 기존 기법에는 전력 스펙트럼 밀도분석 (power spectral density analysis; PSDA)과 정준상관분석 (canonical correlation analysis; CCA)이 있다. 그러나 PSDA는 단일 전극만을 사용하기 때문에 잡음에 취약한 단점이 있고, CCA는 PSDA보다 높은 정확도를 가지지만 사인-코사인을 기준신호로 가지므로 짧은 시간 윈도우 길이를 가질 경우 실시간 BCI 시스템에 적용되기 어렵다. 따라서 본 논문에서는 기존의 기법들의 한계점을 보완하기 위해 CCA의 결과로 얻을 수 있는 정준변수 간의 전력차이를 이용하는 CCA와 PSDA를 결합한 기법을 제안한다. 실험 결과를 통해, SSVEP 기반 BCI 시스템이 짧은 시간 윈도우 길이를 가질 때 제안된 기법이 기존의 CCA 기법에 비해 더욱 높은 주파수 인식 정확도를 가짐을 보여준다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. SSVEP 신호 측정을 위한 실험 설계
Ⅲ. 기존의 SSVEP 신호의 주파수 인식 기법
Ⅳ. 제안한 CCA와 PSDA가 결합된 기법
Ⅴ. 실험 결과 및 분석
Ⅵ. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002082370