메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dayoung Chun (Seoul National University) Tae Sung Kim (Seoul National University) Kyujoong Lee (Sun Moon University) Hyuk-Jae Lee (Seoul National University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.1
발행연도
2020.2
수록면
1 - 6 (6page)
DOI
10.5573/IEIESPC.2020.9.1.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
High Efficiency Video Coding (HEVC) is a widely used video compression standard that minimizes the sacrifice in visual quality. Convolutional neural networks (CNNs) are being used as a post-processing tool for video restoration degraded by compression. Improving on CNN-based video restoration, this paper attempts a new generative adversarial network (GAN)-based video restoration called a compressed video restoration generative adversarial network (CVRGAN). Although a GAN is widely used for perceptual image enhancement in super-resolution and noise reduction, it is not yet used for compressed video restoration. The proposed CVRGAN is the first attempt to utilize a GAN to create the texture of a degraded image, and consequently, to generate detailed textures that were lost due to compression. In order to avoid the side effect of a GAN boosting the blocking and ringing artifacts incurred by compression, the CVRGAN employs a new content loss that is a combination of VGG feature difference, which represents a perceptual loss, and an objective loss, such as mean squared error (MSE) or mean absolute error (MAE). The new loss function is effective in the enhancement of subjective image quality while suppressing artifact boosting. An extensive mean opinion score (MOS) test shows that the CVRGAN achieves an improvement in perceptual quality over previous CNN-based video restoration.

목차

Abstract
1. Introduction
2. Image Enhancement with a Generative Adversarial Network
3. The Proposed Compressed Video Restoration
4. Experiments
5. Conclusion
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0