메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제41권 제4호
발행연도
2019.8
수록면
0 - 0 (0page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Generative adversarial networks (GAN) have been successfully used in many image restoration tasks, including image denoising, super?resolution, and compression artifact reduction. By fully exploiting its characteristics, state?of?the?art image restoration techniques can be used to generate images with photorealistic details. However, there are many applications that require faithful rather than visually appealing image reconstruction, such as medical imaging, surveillance, and video coding. We found that previous GAN?training methods that used a loss function in the form of a weighted sum of fidelity and adversarial loss fails to reduce fidelity loss. This results in non?negligible degradation of the objective image quality, including peak signal?to?noise ratio. Our approach is to alternate between fidelity and adversarial loss in a way that the minimization of adversarial loss does not deteriorate the fidelity. Experimental results on compression?artifact reduction and super?resolution tasks show that the proposed method can perform faithful and photorealistic image restoration.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0