메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이진규 (Semyung University) 이보희 (Semyung University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제4호
발행연도
2019.12
수록면
325 - 332 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
현재 아이들의 자폐스펙트럼장애 유병률이 한층 더 높게 보고되고 있으며 다양한 형태의 장애 징후를 보이고 있다. 특히 이들은 사회적 의사소통 영역에서 의사소통장애로 인한 대화에 어려움을 겪고 있으며 이를 훈련을 통해 개선 시킬 필요가 대두된다. 이를 위해 본 연구에서는 사전 연구를 통해 설계된 로봇에 장착된 마이크를 통해 음성 정보를 취득하고 이러한 정보를 이용하여 지능적인 동작을 만드는 방식을 제안한다. 음성 정보를 로봇 동작으로 분류하기 위해 인공신경망을 이용하였으며 여러 신경망 기법중 합성곱 방식을 기본으로 한 순환신경망을 결합하여 정확도를 향상시키려고 하였다. 입력 음성 데이터의 전 처리는 MFCC를 이용하여 분석하였으며 여러 데이터 정규화 및 인공신경망 최적화 기법을 활용하여 로봇의 동작을 추정하였다. 아울러 설계된 인공신경망은 기존에 사용한 구조 및 사람이 개입하여 분석하는 방법과의 정확도 비교 실험을 진행하여 분석 결과가 높은 정확도를 나타냈다. 향후 보다 높은 정확도를 가질 수 있는 로봇 동작을 설계하여 실제의 자폐아 치료 및 교육환경에서 적용할 수 있기 위하여 다양한 형태의 데이터를 수집하고 효율적으로 전처리하는 방식에 대한 연구가 요구된다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 로봇 시스템
Ⅲ. 음성 데이터 분석 시스템
Ⅳ. 인공신경망 설계
Ⅴ. 실험 결과
Ⅵ. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000378216