메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정현 (인하대학교) 윤의녕 (인하대학교) 조근식 (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.7
발행연도
2020.7
수록면
665 - 673 (9page)
DOI
10.5626/JOK.2020.47.7.665

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 음성 기반 감정 인식 연구는 단일한 음성 특징값을 사용한 경우와 여러 가지 음성 특징값을 사용한 경우로 분류할 수 있다. 단일한 음성 특징값을 사용한 경우는 음성의 강도, 배음 구조, 음역 등 음성의 다양한 요소를 반영하기 어렵다는 문제가 있다. 여러 가지 음성 특징값을 사용한 경우에는 머신러닝 기반의 연구들이 다수를 차지하는데, 딥러닝 기반의 연구들에 비해 상대적으로 감정 인식 정확도가 낮다는 단점이 있다. 이러한 문제를 해결하기 위해 멜-스펙트로그램(Mel-Spectrogram)과 MFCC(Mel Frequency Cepstral Coefficient)를 음성 특징값으로 사용한 합성곱 신경망(Convolutional Neural Network) 기반의 음성 감정 인식 모델을 제안하였다. 제안하는 모델은 학습 속도 및 정확도 향상을 위해 전이학습과 어텐션(Attention)을 적용하였으며, 77.65%의 감정 인식 정확도를 달성하여 비교 대상들보다 높은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 배경지식 및 관련 연구
3. 전이 학습과 어텐션(Attention)을 적용한 합성곱 신경망 기반의 음성 감정 인식 모델
4. 실험 및 결과
5. 결론 및 향후 연구
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000890593