메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jeongho Lee (대전대학교)
저널정보
한국공공관리학회 한국공공관리학보 한국공공관리학보 제33권 제3호
발행연도
2019.9
수록면
81 - 106 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The main purpose of this article is to examine why the variation in government reform occurs among school districts. In the USA, school choice movement (SCM) has facilitated public education reform. It has provided scholars and political leaders with a competitive spirit and diverse innovative tools to reform America’s monopolistic and command-controlled public education system. Since many innovative SCM tools have been introduced to the conventional public education system in the early 1990s, the current picture shows that there is the significant variation in the degree of public education reform at the local level. Using Colorado’s school districts as the units of analysis, this article examines explanatory factors that lead this variation. The analyzed results of multiple ordinary least square (OLS) regression analysis indicate that three independent variables—mimetic diffusion, interest groups, and student population—are statistically significant. Namely, these final findings demonstrate that a neighboring jurisdiction, interest groups, and student population size play an important role as factors in explaining this variation of local public education reform in the USA. Meanwhile, this study contributes to making the logic of diffusion phenomenon more concrete and creating two new terminologies—‘mimetic diffusion’ and ‘coercive diffusion’—by integrating the similar contents of both diffusion model and isomorphism.

목차

Abstract
Ⅰ. Introduction
Ⅱ. School Choice Movement (SCM) and Charter Schools
Ⅲ. Diffusion Model
Ⅳ. Main Characteristics of School Districts
Ⅴ. Data Collection and Methods
Ⅵ. Findings
Ⅶ. Conclusion
REFERENCES

참고문헌 (94)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-350-000359443