메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박중구 (삼성중공업) 김민규 (삼성중공업)
저널정보
대한조선학회 대한조선학회 논문집 대한조선학회논문집 제57권 제1호(통권 제229호)
발행연도
2020.2
수록면
45 - 51 (7page)
DOI
10.3744/SNAK.2020.57.1.045

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we developed an allocation optimization system for supply chain management in the shipbuilding and offshore construction industry. Supply chain operation is a way of operating manufacturing company responsible for the procurement of outfitting parts. The method about how to allocate the manufacturing volume to each partner company includes important decisions. According to the allocation method, the stability of the material supplied to the final installation process is guaranteed. We improved the allocation method that was previously decided by the person in charge. Based on the optimization engine, a system is developed that can automatically allocate the production volume. For optimization model configuration, factors affecting the volume allocation were analyzed and modeled as constraint factors. A target function is defined to minimize the difference in the load variance of each partner company. In order to use the same type of volume allocation engine for various outfitting products, the amount of work done by the partner company was standardized. We developed an engine that can allocate the same production load of each production partner. Using this engine, the operating system was developed and applied to the actual offshore project. It has been confirmed that the work load variance of suppliers can be maintained uniformly using the optimization engine rather than manual method. By this system, we stabilize the manufacturing process of partner suppliers.

목차

1. 서론
2. 의장품 제작 물량 할당 자동화 시스템의 개념 설계
3. 물량 배정 최적화 시스템의 정식화
4. 물량 배정 최적화 적용 및 검증
5. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-538-000364035