메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박재성 (Kwangwoon University) 윤창용 (Suwon Science College)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제1호
발행연도
2020.1
수록면
190 - 196 (7page)
DOI
10.5370/KIEE.2020.69.1.190

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a system with multiple sensors to track vehicles in real time while driving. Environmental information on real-time roads has the characteristics of nonlinear, non-gaussian distributions, and the performance of tracking systems tends to decrease if sudden changes occur and outliers are included. To overcome these shortcomings from vehicle tracking systems, we proposes algorithms that maintain stable and robust characteristics in real-time road environments using distributed particle filters and symmetrical-stability parameters. The distributed particle filter adopts a Gaussian mixed model exchanging parameters between adjacent sensor nodes to approximate the posterior distribution of the weighted particles. The average consensus filter is used to enable each sensor node to interact with the neighboring node. Also, outliers such as impulse, the state estimation method applied to the particle filter-based tracking system is likely to result in degraded performance. To resolve these problems, this paper proposes the method to use a probability density function approximated by the particles generated, as using α-stability distribution value appropriate to the circumstances. The experimental results show that the proposed method has better performance than other traditional particle methods, even when multiple sensors are used to detect multiple objects in nonlinear environment where rapid changes occur.

목차

Abstract
1. 서론
2. Distributed Particle Filter
3. Proposed Algorithms
4. Experimental Results
5. Conclusions
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-000248474