메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황준호 (호서대학교) 이태진 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제29권 제6호
발행연도
2019.12
수록면
1,327 - 1,337 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
IoT 시장의 성장과 더불어 linux 아키텍쳐를 사용하는 디바이스들에 대해 악성코드 보안 위협이 꾸준히 증가하고 있다. 하지만, Mirai 등의 심각한 보안피해를 야기한 주요 악성코드들을 제외하면 linux 악성코드에 대한 보안 커뮤니티의 관련 기술이나 연구는 전무한 수준이다. 또한, IoT 환경의 디바이스, 벤더, 아키텍쳐 등의 다양성이 더욱 심화됨에 따라 linux 악성코드 대응 난이도 또한 심화되고 있다. 따라서, 본 논문에서는 linux 아키텍쳐의 주요 포맷인 ELF를 분석하고 이를 기반으로 한 분석 시스템과, IoT 환경을 고려한 바이너리 기반의 분석 시스템을 제안한다. ELF 기반의 분석 시스템은 상대적으로 고속으로 다수의 악성코드에 대해 전처리 분류 할 수 있으며 상대적으로 저속의 바이너리 기반의 분석 시스템은 전처리 하지 못한 데이터에 대해 모두 분류 가능하다. 이러한 두 개의 프로세스는 서로 상호보완되어 효과적으로 linux 기반의 악성코드를 분류할 수 있을 것이라 기대한다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안모델
IV. 시험결과
V. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0