메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Cong-Lin Ran (Wonkwang University) Suck-Tae Joung (Wonkwang University)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제12권 제6호
발행연도
2019.12
수록면
681 - 689 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
웹 사용 패턴 발견은 웹 로그 데이터를 사용하는 고급 수단이며 웹 로그 데이터 마이닝에 데이터 마이닝 기술을 적용한 특정 응용이다. 교육 분야에서 데이터 마이닝 (DM)은 데이터 마이닝 기술을 교육 데이터 (대학의 웹 로그, e-러닝, 적응형 하이퍼미디어 및 지능형 튜터링시스템 등)에 적용한다. 따라서 교육 연구 문제를 해결하기 위해 이러한 유형의 데이터를 분석하는 것이 목표이다. 본 논문에서는 대학의 웹 로그 데이터가 데이터 마이닝의 연구 대상으로 사용되어 진다. 데이터베이스 OLAP 기술을 사용하여 웹 로그 데이터가 데이터 마이닝에 사용될 수 있는 데이터 형식으로 사전 처리되고 그 처리 결과가 MSSQL에 저장된다. 동시에 처리 된 웹 로그 레코드를 기반으로 기본 데이터 통계 및 분석이 완료된다. 또한 웹 사용 패턴 마이닝의 Apriori Algorithm 및 구현 프로세스를 소개하고 Python 개발 환경에서 Apriori Algorithm 프로그램을 개발했다. 그런 다음 Apriori Algorithm의 성능을 보이고 웹 사용자 액세스 패턴의 마이닝을 실현했다. 이 연구 결과는 교육 시스템 개발에 패턴을 적용하는데 중요한 이론적 의미를 갖는다. 다음 연구로는 분산 컴퓨팅 환경에서 Apriori Algorithm의 성능 향상을 연구하는 것이다.

목차

Abstract
요약
1. Introduction
2. Apriori algorithm
3. Empirical research
4. Conclusion
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0