메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seok-Ju Hahn (Ulsan National Institute of Science and Technology) Junghye Lee (Ulsan National Institute of Science and Technology)
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2019년 대한산업공학회 추계학술대회
발행연도
2019.11
수록면
401 - 410 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In clinical research, the lack of events of interest often necessitates imbalanced learning. One approach to resolve this obstacle is data integration or sharing, but due to privacy concerns neither is practical. Therefore, there is an increasing demand for a platform on which an analysis can be performed in a federated environment while maintaining privacy. However, it is quite challenging to develop a federated learning algorithm that can address both privacypreserving and class imbalanced issues. In this study, we introduce a federated generative model learning platform for generating samples in a data-distributed environment while preserving privacy. We specifically propose approximate Bayesian computation-based Gaussian Mixture Model called ‘Federated ABCGMM’, which can oversample data in a minor class by estimating the posterior distribution of model parameters across institutions in a privacy-preserving manner. PhysioNet2012, a dataset for prediction of mortality of patients in an Intensive Care Unit (ICU), was used to verify the performance of the proposed method. Experimental results show that our method boosts classification performance in terms of F1 score up to nearly an ideal situation. It is believed that the proposed method can be a novel alternative to solving class imbalance problems.

목차

Abstract
1. Introduction
2. Preliminaries
3. Methods
4. Experiments and Results
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-530-001293607