메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nandini Manickam (S.R.M Institute of Science and Technology) Vijayakumar Ponnusamy (S.R.M Institute of Science and Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.3
발행연도
2024.6
수록면
254 - 262 (9page)
DOI
10.5573/IEIESPC.2024.13.3.254

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent trends of growth in technologies, data management, maintenance of medical records, sharing of data, diagnosis of disease, and medication are the key areas where digital healthcare plays a vital role. Despite enormous improvement, handling huge amounts of data, privacy, secure sharing, accuracy, and computational speed remains challenging. Federated learning is a machine learning technology that allows distributed model training using users’ own data to train a model. The model update is done through a central server that aggregates individual users and sends a global model. This ensures privacy protection and is suitable for handling large data. Blockchain technology is a publicly distributed ledger that collects the information of nodes as blocks and sends a copy to all nodes in the network so that data transparency is maintained and secure. However, blockchain has a limitation in handling large volumes of data. In such cases, federated learning can be used with a blockchain for better performance. By integrating federated learning with blockchain, accurate prediction, computational speed, data security, privacy, and accuracy can be achieved. A comprehensive review of how various federated learning technologies can integrate with blockchain networks to achieve accuracy and efficiency is presented.

목차

Abstract
1. Introduction
2. Related Work
3. Healthcare using Federated Learning and Blockchain
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090068432