메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Zilong Cheng (National University of Singapore) Jun Ma (National University of Singapore) Xiaocong Li (Singapore Institute of Manufacturing Technology) Xiaoxue Zhang (National University of Singapore) Tong Heng Lee (National University of Singapore)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
235 - 240 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Iterative Feedback Tuning (IFT) algorithm explores the correlation between the cost function and the parameters of the controller. It introduces one data-driven approach to derive the gradient of the cost function with respect to the controller parameters and provides an iterative numerical method for the controller parameters optimization. However, classical IFT algorithms require three experiments to be conducted at one iteration, and one special experiment is included in the three experiments. That means the reference signal is changed during the iteration because of the special experiment, which restricts the application of the IFT algorithm in many areas. Besides, in many process control applications with long duration, IFT algorithm is much more time-consuming than many other tuning algorithms. In this paper, a novel IFT algorithm is proposed. For each iteration, no special experiment is required, which means parameters of the controller can be tuned when the system is running normally. Simulation results on a tray indexing system demonstrate the high performance and applicability of this algorithm.

목차

Abstract
1. INTRODUCTION
2. PRELIMINARY
3. PROPOSED IFT ALGORITHM
4. NUMERICAL VERIFICATION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0