메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ayon Kumar Das (Saga University) Takenao Sugi (Saga University) Yoshitaka Matsuda (Saga University) Satoru Goto (Saga University) Shigeto Nishida (Fukuoka Institute of Technology) Kei sato (Kyoto University Graduate School of Medicine) Keiko Usui (Sapporo Medical University) Takefumi Hitomi (Kyoto University Graduate School of Medicine) Masao Matsuhashi (Kyoto University) Akio Ikeda (Kyoto University Graduate School of Medicine) Takashi Nagamine (Sapporo Medical University) Hiroshi Shibasaki (Kyoto University Graduate School of Medicine)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
198 - 203 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Automatic judgment of open/closed eye states from the awake background electroencephalogram (EEG) recording has been always in a high demand for neurological signal analysis and plays an important role for posterior dominant rhythm (PDR) analysis. PDR appears predominantly in occipital lobes and contains significant information for interpreting fundamental brain dysfunctions. The aim of this research is to develop a system that can properly differentiate between open and closed eye states, so that some specific segments can be chosen for PDR analysis that appears just after eye open/close. In this proposed method, a computer assisted automatic system for eye-opening/closing detection from awake background EEG has been developed. EEG data that was visually inspected by a qualified electroencephalographer (EEGer) was taken into account for separating open and closed eye states by creating parameters for each states. Later using those parameters and conditions, new equations were developed and implemented for accurate detection of open/closed eye. Based on the automatic detection result, some specific segments that appears just after eye open/close will be selected for PDR analysis. Organization, frequency, amplitude and their asymmetry these characteristics will be taken into account for PDR analysis.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. RESULT & DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0