메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ryo Inoue (Saga University) Takenao Sugi (Saga University) Yoshitaka Matsuda (Saga University) Satoru Goto (Saga University) Haruhiko Nohira (Nihon-Kohden Corporation) Ryuzo Mase (Nihon-Kohden Corporation)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
194 - 197 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Electroencephalographic (EEG) record provides the state of the brain activations and is useful for the clinical diagnosis of the brain dysfunction. However, the preparation of EEG recording such as attachment of electrodes, measurement device setting, etc., is time-consuming and complex. In addition, interpretation of recorded EEG requires particular knowledge and experiences. Therefore, the use of EEG recording is limited. Recent years, simple and easy wearable EEG devices have been developed and are considered to be the practical level. Those devices are easy to attach the measurement electrodes to the scalp without special skills and do not constrain the subjects` movement. In contrast to conventional EEG recordings, the number of electrodes is limited, so the accurate interpretation and/or analysis of EEG characteristics would rather be difficult. Especially, discrimination of actual EEG activities from various contaminated artifacts are crucial for clinical application. In this study, the characteristics of the recorded EEG by using a wearable EEG device was analyzed. Automatic detection method for contaminated artifacts such eye blinking, lateral eye movement (LEM) and electromyographic (EMG) activity were developed. Results were compared with the visual inspection for the recorded data.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. Result & Discussion
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0